Anisotropic dynamics of the JE-2147-HIV protease complex: drug resistance and thermodynamic binding mode examined in a 1.09 A structure.
نویسندگان
چکیده
The structure of HIV protease (HIV Pr) bound to JE-2147 (also named AG1776 or KNI-764) is determined here to 1.09 A resolution. This highest-resolution structure for HIV Pr allows refinement of anisotropic displacement parameters (ADPs) for all atoms. Clustering based on the directional information in ADPs defines two sets of subdomains such that within each set, subdomains undergo similar anisotropic motion. These sets are (a) the core of monomer A grouped with both substrate-binding flaps and (b) the core of monomer B coupled to both catalytic aspartates (25A/B). The four-stranded beta-sheet (1-4 A/B and 95-99 A/B) that forms a significant part of the dimer interface exhibits large anisotropic amplitudes that differ from those of the other sets of subdomains. JE-2147 is shown here to be a picomolar inhibitor (K(i) = 41 +/- 18 pM). The structure is used to interpret the mechanism of association of JE-2147, a second-generation inhibitor for which binding is enthalpically driven, with respect to first-generation inhibitors for which binding is predominantly entropically driven [Velazquez-Campoy, A., et al. (2001) Arch. Biochem. Biophys. 390, 169-175]. Relative to the entropically driven inhibitor complexes, the JE-2147-HIV Pr complex exhibits an approximately 0.5 A movement of the substrate flaps in toward the substrate, suggesting a more compatible enthalpically driven association. Domains of the protease identified by clustering of ADPs also suggest a model of enthalpy-entropy compensation for all HIV Pr inhibitors in which dynamic coupling of the flaps is offset by an increased level of motion of the beta-sheet domain of the dimer interface (1-4 A/B and 95-99 A/B).
منابع مشابه
JE-2147: a dipeptide protease inhibitor (PI) that potently inhibits multi-PI-resistant HIV-1.
We designed, synthesized, and identified JE-2147, an allophenylnorstatine-containing dipeptide HIV protease inhibitor (PI), which is potent against a wide spectrum of HIV-1, HIV-2, simian immunodeficiency virus, and various clinical HIV-1 strains in vitro. Drug-resistant clinical HIV-1 strains, isolated from seven patients who had failed 9-11 different anti-HIV therapeutics after 32-83 months, ...
متن کاملResistance mechanism of human immunodeficiency virus type-1 protease to inhibitors: A molecular dynamic approach
Human immunodeficiency virus type 1 (HIV-1) protease inhibitors comprise an important class of drugs used in HIV treatments. However, mutations of protease genes accelerated by low fidelity of reverse transcriptase yield drug resistant mutants of reduced affinities for the inhibitors. This problem is considered to be a serious barrier against HIV treatment for the foreseeable future. In this st...
متن کاملDrug- Resistance- Associated Mutations and HIV Sub-Type Determination in Drug-Naïve and HIV-Positive Patients under Treatment with Antiretroviral Drugs
Abstract Background and Objective: Resistance to antiretroviral agents is a significant concern in clinical management of HIV-infected individuals. Resistance is the result of mutations that develops in the viral protein targeted by antiretroviral agents. Material and Methods: In this cross-sectional study, the blood samples of 40 HIV-positive patients were collected. Twenty of them were d...
متن کاملDesign of new potent HTLV-1 protease inhibitors: in silico study
HTLV-1 and HIV-1 are two major causes for severe T-cell leukemia disease and acquired immune deficiency syndrome (AIDS). HTLV-1 protease, a member of aspartic acid protease family, plays important roles in maturation during virus replication cycle. The impairment of these proteases results in uninfectious HTLV-1virions.Similar to HIV-1protease deliberate mutations that confer drug resistance on...
متن کاملA comprehensive study of HSA interaction with TMP using molecular docking and molecular dynamics methods: as an appropriate tool for drug delivery systems
Background: Human serum albumin (HSA) is one of the most prominent protein in human blood. Trimethoprim (TMP) is an efficient antibiotic drug for treatment of pneumocystis pneumonia (PCP). Patients with HIV/AIDS and cancer are extremely affected by the disease due to immune system deficiency. Objective: The aim of this study is to evaluate the molecular dynamics simulation (MD) of HSA with TMP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 41 14 شماره
صفحات -
تاریخ انتشار 2002